Articles | Volume 10, issue 2
Geosci. Instrum. Method. Data Syst., 10, 161–168, 2021
https://doi.org/10.5194/gi-10-161-2021
Geosci. Instrum. Method. Data Syst., 10, 161–168, 2021
https://doi.org/10.5194/gi-10-161-2021

Review article 28 Jul 2021

Review article | 28 Jul 2021

The impact and resolution of the GPS week number rollover of April 2019 on autonomous geophysical instrument platforms

Shane Coyle et al.

Related authors

An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection
C. R. Clauer, H. Kim, K. Deshpande, Z. Xu, D. Weimer, S. Musko, G. Crowley, C. Fish, R. Nealy, T. E. Humphreys, J. A. Bhatti, and A. J. Ridley
Geosci. Instrum. Method. Data Syst., 3, 211–227, https://doi.org/10.5194/gi-3-211-2014,https://doi.org/10.5194/gi-3-211-2014, 2014

Related subject area

Ground-based instruments
Internet-of-things-based four-dimensional high-density electrical instrument for geophysical prospecting
Keyu Zhou, Qisheng Zhang, Yongdong Liu, Zhen Wu, Zucan Lin, Bentian Zhao, Xingyuan Jiang, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 10, 141–151, https://doi.org/10.5194/gi-10-141-2021,https://doi.org/10.5194/gi-10-141-2021, 2021
Short summary
Design and implementation of the detection software of a wireless microseismic acquisition station based on the Android platform
Qimao Zhang, Shuaiqing Qiao, Qisheng Zhang, and Shiyang Liu
Geosci. Instrum. Method. Data Syst., 10, 91–100, https://doi.org/10.5194/gi-10-91-2021,https://doi.org/10.5194/gi-10-91-2021, 2021
Short summary
First evaluation of an absolute quantum gravimeter (AQG#B01) for future field experiments
Anne-Karin Cooke, Cédric Champollion, and Nicolas Le Moigne
Geosci. Instrum. Method. Data Syst., 10, 65–79, https://doi.org/10.5194/gi-10-65-2021,https://doi.org/10.5194/gi-10-65-2021, 2021
Short summary
A new borehole electromagnetic receiver developed for controlled-source electromagnetic methods
Sixuan Song, Ming Deng, Kai Chen, Muer A, and Sheng Jin
Geosci. Instrum. Method. Data Syst., 10, 55–64, https://doi.org/10.5194/gi-10-55-2021,https://doi.org/10.5194/gi-10-55-2021, 2021
Short summary
Daytime and nighttime aerosol optical depth implementation in CÆLIS
Ramiro González, Carlos Toledano, Roberto Román, David Fuertes, Alberto Berjón, David Mateos, Carmen Guirado-Fuentes, Cristian Velasco-Merino, Juan Carlos Antuña-Sánchez, Abel Calle, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 9, 417–433, https://doi.org/10.5194/gi-9-417-2020,https://doi.org/10.5194/gi-9-417-2020, 2020
Short summary

Cited articles

Allan, D. W. and Weiss, M. A.: Accurate Time and Frequency Transfer During Common-View of a GPS Satellite, 34th Annual Frequency Control Symposium, National Bureau of Standards, Boulder, Colorado, USA, 334–346, 1980. a
Clauer, C. R., Kim, H., Deshpande, K., Xu, Z., Weimer, D., Musko, S., Crowley, G., Fish, C., Nealy, R., Humphreys, T. E., Bhatti, J. A., and Ridley, A. J.: An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection, Geosci. Instrum. Method. Data Syst., 3, 211–227, https://doi.org/10.5194/gi-3-211-2014, 2014 (data available at: http://mist.nianet.org, last access: 12 July 2020). a, b, c
Cozzens, T.: GPS Week Rollover grounds Aussie weather balloons, Boeing planes, available at: https://www.gpsworld.com/gps-week-rollover-grounds-aussie-weather-balloons (last access: November 2019), 2019. a
Divis, D. A.: GPS Rollover Hamstrings New York City Wireless Network and a Handful of Other Systems, available at: https://insidegnss.com/gps-rollover-hamstrings-new-york-city-wireless-network-and-a-handful-of-other-systems (last access: November 2019), 2019. a
Gallagher, S.: Somebody forgot to upgrade: Flights delayed, cancelled by GPS rollover, available at: https://arstechnica.com/information-technology/2019/04/gps-rollover-apparently-cause-of-multiple-flight-delays-groundings (last access: November 2019), 2019. a
Download
Short summary
Global satellite navigation systems are commonly used for timing and synchronization of instrument platforms. These system clocks periodically roll over from limitations in discrete counter math. Due to the rarity of these events (19.6 years for GPS), special consideration must be given to designing instruments intended for use in hard-to-reach locations like the Antarctic Plateau. A few best practices are presented to prevent total system failure from unexpected subsystem faults.