Articles | Volume 10, issue 2
https://doi.org/10.5194/gi-10-161-2021
https://doi.org/10.5194/gi-10-161-2021
Review article
 | 
28 Jul 2021
Review article |  | 28 Jul 2021

The impact and resolution of the GPS week number rollover of April 2019 on autonomous geophysical instrument platforms

Shane Coyle, C. Robert Clauer, Michael D. Hartinger, Zhonghua Xu, and Yuxiang Peng

Related authors

An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection
C. R. Clauer, H. Kim, K. Deshpande, Z. Xu, D. Weimer, S. Musko, G. Crowley, C. Fish, R. Nealy, T. E. Humphreys, J. A. Bhatti, and A. J. Ridley
Geosci. Instrum. Method. Data Syst., 3, 211–227, https://doi.org/10.5194/gi-3-211-2014,https://doi.org/10.5194/gi-3-211-2014, 2014

Related subject area

Ground-based instruments
Calculation of soil water content using dielectric-permittivity-based sensors – benefits of soil-specific calibration
Bartosz M. Zawilski, Franck Granouillac, Nicole Claverie, Baptiste Lemaire, Aurore Brut, and Tiphaine Tallec
Geosci. Instrum. Method. Data Syst., 12, 45–56, https://doi.org/10.5194/gi-12-45-2023,https://doi.org/10.5194/gi-12-45-2023, 2023
Short summary
The land–atmosphere feedback observatory: a new observational approach for characterizing land–atmosphere feedback
Florian Späth, Verena Rajtschan, Tobias K. D. Weber, Shehan Morandage, Diego Lange, Syed Saqlain Abbas, Andreas Behrendt, Joachim Ingwersen, Thilo Streck, and Volker Wulfmeyer
Geosci. Instrum. Method. Data Syst., 12, 25–44, https://doi.org/10.5194/gi-12-25-2023,https://doi.org/10.5194/gi-12-25-2023, 2023
Short summary
Design and construction of an automated and programmable resistivity meter for shallow subsurface investigation
Antenor Oliveira Cruz Júnior, Cosme Ferreira da Ponte-Neto, and André Wiermann
Geosci. Instrum. Method. Data Syst., 12, 15–23, https://doi.org/10.5194/gi-12-15-2023,https://doi.org/10.5194/gi-12-15-2023, 2023
Short summary
Feasibility of irrigation monitoring with cosmic-ray neutron sensors
Cosimo Brogi, Heye Reemt Bogena, Markus Köhli, Johan Alexander Huisman, Harrie-Jan Hendricks Franssen, and Olga Dombrowski
Geosci. Instrum. Method. Data Syst., 11, 451–469, https://doi.org/10.5194/gi-11-451-2022,https://doi.org/10.5194/gi-11-451-2022, 2022
Short summary
Design and operation of a long-term monitoring system for spectral electrical impedance tomography (sEIT)
Maximilian Weigand, Egon Zimmermann, Valentin Michels, Johan Alexander Huisman, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 11, 413–433, https://doi.org/10.5194/gi-11-413-2022,https://doi.org/10.5194/gi-11-413-2022, 2022
Short summary

Cited articles

Allan, D. W. and Weiss, M. A.: Accurate Time and Frequency Transfer During Common-View of a GPS Satellite, 34th Annual Frequency Control Symposium, National Bureau of Standards, Boulder, Colorado, USA, 334–346, 1980. a
Clauer, C. R., Kim, H., Deshpande, K., Xu, Z., Weimer, D., Musko, S., Crowley, G., Fish, C., Nealy, R., Humphreys, T. E., Bhatti, J. A., and Ridley, A. J.: An autonomous adaptive low-power instrument platform (AAL-PIP) for remote high-latitude geospace data collection, Geosci. Instrum. Method. Data Syst., 3, 211–227, https://doi.org/10.5194/gi-3-211-2014, 2014 (data available at: http://mist.nianet.org, last access: 12 July 2020). a, b, c
Cozzens, T.: GPS Week Rollover grounds Aussie weather balloons, Boeing planes, available at: https://www.gpsworld.com/gps-week-rollover-grounds-aussie-weather-balloons (last access: November 2019), 2019. a
Divis, D. A.: GPS Rollover Hamstrings New York City Wireless Network and a Handful of Other Systems, available at: https://insidegnss.com/gps-rollover-hamstrings-new-york-city-wireless-network-and-a-handful-of-other-systems (last access: November 2019), 2019. a
Gallagher, S.: Somebody forgot to upgrade: Flights delayed, cancelled by GPS rollover, available at: https://arstechnica.com/information-technology/2019/04/gps-rollover-apparently-cause-of-multiple-flight-delays-groundings (last access: November 2019), 2019. a
Download
Short summary
Global satellite navigation systems are commonly used for timing and synchronization of instrument platforms. These system clocks periodically roll over from limitations in discrete counter math. Due to the rarity of these events (19.6 years for GPS), special consideration must be given to designing instruments intended for use in hard-to-reach locations like the Antarctic Plateau. A few best practices are presented to prevent total system failure from unexpected subsystem faults.