Articles | Volume 10, issue 1
https://doi.org/10.5194/gi-10-65-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-10-65-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
First evaluation of an absolute quantum gravimeter (AQG#B01) for future field experiments
Géosciences Montpellier, Univ. Montpellier, CNRS, Univ. des Antilles,
Montpellier, France
Cédric Champollion
Géosciences Montpellier, Univ. Montpellier, CNRS, Univ. des Antilles,
Montpellier, France
Nicolas Le Moigne
Géosciences Montpellier, Univ. Montpellier, CNRS, Univ. des Antilles,
Montpellier, France
Related authors
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Séverine Liora Furst, Samuel Doucet, Philippe Vernant, Cédric Champollion, and Jean-Louis Carme
Solid Earth, 12, 15–34, https://doi.org/10.5194/se-12-15-2021, https://doi.org/10.5194/se-12-15-2021, 2021
Short summary
Short summary
We develop a two-step methodology combining multiple surface deformation measurements above a salt extraction site (Vauvert, France) in order to overcome the difference in resolution and accuracy. Using this 3-D velocity field, we develop a model to determine the kinematics of the salt layer. The model shows a collapse of the salt layer beneath the exploitation. It also identifies a salt flow from the deepest and most external part of the salt layer towards the center of the exploitation.
Cédric Champollion, Sabrina Deville, Jean Chéry, Erik Doerflinger, Nicolas Le Moigne, Roger Bayer, Philippe Vernant, and Naomi Mazzilli
Hydrol. Earth Syst. Sci., 22, 3825–3839, https://doi.org/10.5194/hess-22-3825-2018, https://doi.org/10.5194/hess-22-3825-2018, 2018
Short summary
Short summary
Gravity monitoring at the surface and in situ (in caves) has been conducted in a karst hydro-system in the south of France (Larzac plateau). Subsurface water storage is evidenced with a spatial variability probably associated with lithology differences and confirmed by MRS measurements. Gravity allows transient water storage to be estimated on the seasonal scale.
Related subject area
Ground-based instruments
A tool for estimating ground-based InSAR acquisition characteristics prior to monitoring installation and survey and its differences from satellite InSAR
An underground drip water monitoring network to characterize rainfall recharge of groundwater at different geologies, environments, and climates across Australia
Research and application of a flexible measuring array for deep displacement of landslides
A hydrate reservoir renovation device and its application in nitrogen bubble fracturing
Gas equilibrium membrane inlet mass spectrometry (GE-MIMS) for water at high pressure
Development of a power station unit in a distributed hybrid acquisition system of seismic and electrical methods based on the narrowband Internet of Things (NB-IoT)
Spectral observations at the Canary Island Long-Baseline Observatory (CILBO): calibration and datasets
Calculation of soil water content using dielectric-permittivity-based sensors – benefits of soil-specific calibration
The land–atmosphere feedback observatory: a new observational approach for characterizing land–atmosphere feedback
Design and construction of an automated and programmable resistivity meter for shallow subsurface investigation
Feasibility of irrigation monitoring with cosmic-ray neutron sensors
Design and operation of a long-term monitoring system for spectral electrical impedance tomography (sEIT)
Measurements of natural airflow within a Stevenson screen and its influence on air temperature and humidity records
The soil heat flux sensor functioning checks, imbalances' origins, and forgotten energies
Wind speed influences corrected Autocalibrated Soil Evapo-respiration Chamber (ASERC) evaporation measures
Assessing the feasibility of a directional cosmic-ray neutron sensing sensor for estimating soil moisture
Accounting for meteorological effects in the detector of the charged component of cosmic rays
Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: initial results from three different sites in Czechia (central Europe)
The impact and resolution of the GPS week number rollover of April 2019 on autonomous geophysical instrument platforms
Internet-of-things-based four-dimensional high-density electrical instrument for geophysical prospecting
Design and implementation of the detection software of a wireless microseismic acquisition station based on the Android platform
A new borehole electromagnetic receiver developed for controlled-source electromagnetic methods
Daytime and nighttime aerosol optical depth implementation in CÆLIS
A geophone-based and low-cost data acquisition and analysis system designed for microtremor measurements
A monitoring system for spatiotemporal electrical self-potential measurements in cryospheric environments
Evaluating the suitability of the consumer low-cost Parrot Flower Power soil moisture sensor for scientific environmental applications
Development of a new distributed hybrid seismic and electrical data acquisition station based on system-on-a-programmable-chip technology
Development of a distributed hybrid seismic–electrical data acquisition system based on the Narrowband Internet of Things (NB-IoT) technology
A low-cost autonomous rover for polar science
Shallow geophysical techniques to investigate the groundwater table at the Great Pyramids of Giza, Egypt
Apsu: a wireless multichannel receiver system for surface nuclear magnetic resonance groundwater investigations
Development of high-precision distributed wireless microseismic acquisition stations
Links between annual surface temperature variation and land cover heterogeneity for a boreal forest as characterized by continuous, fibre-optic DTS monitoring
The development and test research of a multichannel synchronous transient electromagnetic receiver
Evaluating four gap-filling methods for eddy covariance measurements of evapotranspiration over hilly crop fields
Tri-axial square Helmholtz coil system at the Alibag Magnetic Observatory: upgraded to a magnetic sensor calibration facility
Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment
Development of a full-waveform voltage and current recording device for multichannel transient electromagnetic transmitters
Making better sense of the mosaic of environmental measurement networks: a system-of-systems approach and quantitative assessment
Fog-based automatic true north detection for absolute magnetic declination measurement
Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (µ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer
U.S. Geological Survey experience with the residual absolutes method
The magnetic observatory on Tatuoca, Belém, Brazil: history and recent developments
Several years of experience with automatic DI-flux systems: theory, validation and results
In situ vector calibration of magnetic observatories
A low-power data acquisition system for geomagnetic observatories and variometer stations
Method for processing XCP data with improved accuracy
Analysis of the technical biases of meteor video cameras used in the CILBO system
Video cascade accumulation of the total solar eclipse on Svalbard 2015
Vehicular-networking- and road-weather-related research in Sodankylä
Charlotte Wolff, Marc-Henri Derron, Carlo Rivolta, and Michel Jaboyedoff
Geosci. Instrum. Method. Data Syst., 13, 225–248, https://doi.org/10.5194/gi-13-225-2024, https://doi.org/10.5194/gi-13-225-2024, 2024
Short summary
Short summary
The remote-sensing InSAR technique is vital for monitoring slope instabilities but requires understanding. This paper delves into differences between satellite and GB-InSAR. It offers a tool to determine the optimal GB-InSAR installation site, considering various technical, meteorological, and topographical factors. By generating detailed maps and simulating radar image characteristics, the tool eases the setup of monitoring campaigns for effective and accurate ground movement tracking.
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
Geosci. Instrum. Method. Data Syst., 13, 117–129, https://doi.org/10.5194/gi-13-117-2024, https://doi.org/10.5194/gi-13-117-2024, 2024
Short summary
Short summary
Much of the world relies on groundwater as a water resource, yet it is hard to know when and where rainfall replenishes our groundwater aquifers. Caves, mines, and tunnels that are situated above the groundwater table are unique observatories of water transiting from the land surface to the aquifer. This paper will show how networks of loggers deployed in these underground spaces across Australia have helped understand when, where, and how much rainfall is needed to replenish the groundwater.
Yang Li, Zhong Li, Qifeng Guo, Yimin Liu, and Daji Zhang
Geosci. Instrum. Method. Data Syst., 13, 97–105, https://doi.org/10.5194/gi-13-97-2024, https://doi.org/10.5194/gi-13-97-2024, 2024
Short summary
Short summary
We have developed a novel flexible measurement array for deep landslide displacement and measurement processes, which enables higher accuracy in full-hole multidimensional deformation measurement. It provides a more comprehensive monitoring tool for disaster prevention and reduction.
Jingsheng Lu, Yuanxin Yao, Dongliang Li, Jinhai Yang, Deqing Liang, Yiqun Zhang, Decai Lin, and Kunlin Ma
Geosci. Instrum. Method. Data Syst., 13, 75–83, https://doi.org/10.5194/gi-13-75-2024, https://doi.org/10.5194/gi-13-75-2024, 2024
Short summary
Short summary
Natural gas hydrate (GH) is a significant potential energy source. However, the gas production rate of past GH production tests is much lower than the requirement of commercial gas production. Reservoir stimulation technologies like hydraulic fracture provide one potential approach to enhance gas production from GH. This paper presents an experimental facility that was developed to analyze the hydraulic fracture mechanism in a synthesized hydrate-bearing sediments.
Matthias S. Brennwald, Antonio P. Rinaldi, Jocelyn Gisiger, Alba Zappone, and Rolf Kipfer
Geosci. Instrum. Method. Data Syst., 13, 1–8, https://doi.org/10.5194/gi-13-1-2024, https://doi.org/10.5194/gi-13-1-2024, 2024
Short summary
Short summary
The gas equilibrium membrane inlet mass spectrometry (GE-MIMS) method for dissolved-gas quantification was expanded to work in water at high pressures.
Feng Guo, Qisheng Zhang, and Shenghui Liu
Geosci. Instrum. Method. Data Syst., 12, 111–120, https://doi.org/10.5194/gi-12-111-2023, https://doi.org/10.5194/gi-12-111-2023, 2023
Short summary
Short summary
We propose a new type of power station unit with wireless data transmission capability, which was not supported by same type of instrument as on the market. Based on this, a novel distributed geophysical data acquisition architecture is also proposed. The proposed instrument loads more stations than the industry-leading LAUL-428 while providing additional wireless data transmission and narrowband Internet of Things remote control.
Joe Zender, Detlef Koschny, Regina Rudawska, Salvatore Vicinanza, Stefan Loehle, Martin Eberhart, Arne Meindl, Hans Smit, Lionel Marraffa, Rico Landman, and Daphne Stam
Geosci. Instrum. Method. Data Syst., 12, 91–109, https://doi.org/10.5194/gi-12-91-2023, https://doi.org/10.5194/gi-12-91-2023, 2023
Short summary
Short summary
The paper describes the ground-based camera equipment to obtain images from dust ablation phenomena (meteors) in the Earth's atmosphere. The meteors are observed from two locations, but one station is equipped with a camera containing a spectral grating, which allows following and determining the spectral information through the meteor ablation process. We describe the data merging, calibration, and processing to finally derive the meteor composition.
Bartosz M. Zawilski, Franck Granouillac, Nicole Claverie, Baptiste Lemaire, Aurore Brut, and Tiphaine Tallec
Geosci. Instrum. Method. Data Syst., 12, 45–56, https://doi.org/10.5194/gi-12-45-2023, https://doi.org/10.5194/gi-12-45-2023, 2023
Short summary
Short summary
In most cases, the soil water content (SWC) measurement is carried out using commercially available dielectric-permittivity-based probes such as time domain reflectometers or frequency domain reflectometers (FDR). However, these probes use transfer functions which may be inadequate in the soil concerned. Raw SWC measurement in clayey soil shows an important relative error. A simple protocol is presented, allowing for the recovery of an acceptable accuracy of the FDR SWC measurements.
Florian Späth, Verena Rajtschan, Tobias K. D. Weber, Shehan Morandage, Diego Lange, Syed Saqlain Abbas, Andreas Behrendt, Joachim Ingwersen, Thilo Streck, and Volker Wulfmeyer
Geosci. Instrum. Method. Data Syst., 12, 25–44, https://doi.org/10.5194/gi-12-25-2023, https://doi.org/10.5194/gi-12-25-2023, 2023
Short summary
Short summary
Important topics in land–atmosphere feedback research are water and energy balances and heterogeneities of fluxes at the land surface and in the atmosphere. To target these questions, the Land–Atmosphere Feedback Observatory (LAFO) has been installed in Germany. The instrumentation allows for comprehensive measurements from the bedrock to the troposphere. The LAFO observation strategy aims for simultaneous measurements in all three compartments: atmosphere, soil and land surface, and vegetation.
Antenor Oliveira Cruz Júnior, Cosme Ferreira da Ponte-Neto, and André Wiermann
Geosci. Instrum. Method. Data Syst., 12, 15–23, https://doi.org/10.5194/gi-12-15-2023, https://doi.org/10.5194/gi-12-15-2023, 2023
Short summary
Short summary
This project aims to demonstrate the viability of the development of a concept prototype that has, as a differential, free software and hardware used in its development and operation. It thus has unique characteristics compared with commercially available equipment for signal detection, providing strong rejection of spurious electrical noise, typical of urban areas. This project is important academic contribution to open-source instrumental research.
Cosimo Brogi, Heye Reemt Bogena, Markus Köhli, Johan Alexander Huisman, Harrie-Jan Hendricks Franssen, and Olga Dombrowski
Geosci. Instrum. Method. Data Syst., 11, 451–469, https://doi.org/10.5194/gi-11-451-2022, https://doi.org/10.5194/gi-11-451-2022, 2022
Short summary
Short summary
Accurate monitoring of water in soil can improve irrigation efficiency, which is important considering climate change and the growing world population. Cosmic-ray neutrons sensors (CRNSs) are a promising tool in irrigation monitoring due to a larger sensed area and to lower maintenance than other ground-based sensors. Here, we analyse the feasibility of irrigation monitoring with CRNSs and the impact of the irrigated field dimensions, of the variations of water in soil, and of instrument design.
Maximilian Weigand, Egon Zimmermann, Valentin Michels, Johan Alexander Huisman, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 11, 413–433, https://doi.org/10.5194/gi-11-413-2022, https://doi.org/10.5194/gi-11-413-2022, 2022
Short summary
Short summary
The construction, operation and analysis of a spectral electrical
impedance tomography (sEIT) field monitoring setup with high spatial and temporal resolution are presented. Electromagnetic induction errors are corrected, allowing the recovery of images of in-phase conductivity and electrical polarisation of up to 1 kHz.
Stephen Burt
Geosci. Instrum. Method. Data Syst., 11, 263–277, https://doi.org/10.5194/gi-11-263-2022, https://doi.org/10.5194/gi-11-263-2022, 2022
Short summary
Short summary
Most measurements of air temperature and humidity originate from Stevenson-type thermometer screens, which can produce erroneous measurements in light winds owing to insufficient ventilation of the in-screen sensors. A field experiment to measure airflow within a Stevenson screen found mean airflow to be only 0.2 m s−1, well below the 1 m s−1 minimum normally assumed, and only 7 % of 10 m mean wind speeds. Implications for air temperature and humidity measurement uncertainties are discussed.
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 223–234, https://doi.org/10.5194/gi-11-223-2022, https://doi.org/10.5194/gi-11-223-2022, 2022
Short summary
Short summary
Surface energy balance (SEB) closure check and important environmental variable monitoring require soil heat flux measurement. On the one hand every experimental technique has its possible errors and needs to be checked and corrected. On the other hand, SEB equation should include all sensed energy sources and sinks.
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 163–182, https://doi.org/10.5194/gi-11-163-2022, https://doi.org/10.5194/gi-11-163-2022, 2022
Short summary
Short summary
Soil evaporation is one of the most important water vapor sources on the Earth with multiple and severe consequences; however, there is a relative lack of instruments to measure it. This study describes a simple apparatus making the soil evaporation measurement accessible. The soil evaporation complexity is overcome by measuring the evaporation dynamic under different measurement conditions. A relatively simple measurement correction is then performed depending on the wind speed.
Till Francke, Maik Heistermann, Markus Köhli, Christian Budach, Martin Schrön, and Sascha E. Oswald
Geosci. Instrum. Method. Data Syst., 11, 75–92, https://doi.org/10.5194/gi-11-75-2022, https://doi.org/10.5194/gi-11-75-2022, 2022
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools like soil moisture, snow, or vegetation. This study presents a directional shielding approach, aiming to measure in specific directions only. The results show that non-directional neutron transport blurs the signal of the targeted direction. For typical instruments, this does not allow acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates is feasible.
Maxim Philippov, Vladimir Makhmutov, Galina Bazilevskaya, Fedor Zagumennov, Vladimir Fomenko, Yuri Stozhkov, and Andrey Orlov
Geosci. Instrum. Method. Data Syst., 10, 219–226, https://doi.org/10.5194/gi-10-219-2021, https://doi.org/10.5194/gi-10-219-2021, 2021
Short summary
Short summary
This paper presents a brief description of the ground-based installation for the study of cosmic rays
CARPET. Today there is a network of such installations located in different parts of the world. For ground-based installations, meteorological effects must be considered as they affect the data. This paper shows a technique for eliminating barometric and temperature dependences based on data for 2019–2020.
Ondřej Racek, Jan Blahůt, and Filip Hartvich
Geosci. Instrum. Method. Data Syst., 10, 203–218, https://doi.org/10.5194/gi-10-203-2021, https://doi.org/10.5194/gi-10-203-2021, 2021
Short summary
Short summary
This paper is dedicated to description of universal, easy-to-modify, and affordable rock slope monitoring system. Using such a system, we are able to monitor environmental variables, the rock mass 3 m subsurface zone temperature profile, and spatiotemporal joint dynamics. We observe differences between three monitored sites. To further data analyses, longer time series are needed. The data will be further used for trend analyses and thermomechanical modelling.
Shane Coyle, C. Robert Clauer, Michael D. Hartinger, Zhonghua Xu, and Yuxiang Peng
Geosci. Instrum. Method. Data Syst., 10, 161–168, https://doi.org/10.5194/gi-10-161-2021, https://doi.org/10.5194/gi-10-161-2021, 2021
Short summary
Short summary
Global satellite navigation systems are commonly used for timing and synchronization of instrument platforms. These system clocks periodically
roll overfrom limitations in discrete counter math. Due to the rarity of these events (19.6 years for GPS), special consideration must be given to designing instruments intended for use in hard-to-reach locations like the Antarctic Plateau. A few
best practicesare presented to prevent total system failure from unexpected subsystem faults.
Keyu Zhou, Qisheng Zhang, Yongdong Liu, Zhen Wu, Zucan Lin, Bentian Zhao, Xingyuan Jiang, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 10, 141–151, https://doi.org/10.5194/gi-10-141-2021, https://doi.org/10.5194/gi-10-141-2021, 2021
Short summary
Short summary
This paper describes the development of a new multifunctional four-dimensional high-density electrical instrument based on remote wireless communication technology, for use in shallow geophysical prospecting. We carried out a lot of tests. Our design successfully addresses a number of shortcomings of such instruments currently available on the market, including bulkiness, weight, limitations in data acquisition accuracy, and difficulty of connecting to the Internet for remote monitoring.
Qimao Zhang, Shuaiqing Qiao, Qisheng Zhang, and Shiyang Liu
Geosci. Instrum. Method. Data Syst., 10, 91–100, https://doi.org/10.5194/gi-10-91-2021, https://doi.org/10.5194/gi-10-91-2021, 2021
Short summary
Short summary
In order to meet the needs of geophysical exploration, the requirements of intelligent and convenient exploration instruments are realized. From the perspective of software, this research combines today's wireless transmission technology to integrate applications into mobile phones to realize remote control of field operations. It provides a new idea for geophysical exploration.
Sixuan Song, Ming Deng, Kai Chen, Muer A, and Sheng Jin
Geosci. Instrum. Method. Data Syst., 10, 55–64, https://doi.org/10.5194/gi-10-55-2021, https://doi.org/10.5194/gi-10-55-2021, 2021
Short summary
Short summary
Current borehole receivers only measure a single parameter of the magnetic field component, which does not meet the special requirements of controlled-source electromagnetic (CSEM) methods. This study proposes a borehole electromagnetic receiver that realizes synchronous acquisition of the vertical electric field component and three-axis orthogonal magnetic field components. Results of the experiments show that our system functioned adequately and that high-quality CSEM signals were obtained.
Ramiro González, Carlos Toledano, Roberto Román, David Fuertes, Alberto Berjón, David Mateos, Carmen Guirado-Fuentes, Cristian Velasco-Merino, Juan Carlos Antuña-Sánchez, Abel Calle, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 9, 417–433, https://doi.org/10.5194/gi-9-417-2020, https://doi.org/10.5194/gi-9-417-2020, 2020
Short summary
Short summary
Aerosol optical depth (AOD) is a parameter widely used in remote sensing for the characterization of atmospheric aerosol particles. AERONET was created by NASA for aerosol monitoring as well as satellite and model validation. The University of Valladolid (UVa) has managed an AERONET calibration center since 2006. The CÆLIS software tool, developed by UVa, was created to manage the data generated by AERONET photometers. The AOD algorithm in CÆLIS is developed and validated in this work.
Ozkan Kafadar
Geosci. Instrum. Method. Data Syst., 9, 365–373, https://doi.org/10.5194/gi-9-365-2020, https://doi.org/10.5194/gi-9-365-2020, 2020
Short summary
Short summary
In this paper, a low-cost, computer-aided, and geophone-based system designed to record, monitor, and analyze three-component microtremor data is presented. This system has several features such as a 200 Hz sampling frequency, text data format, and data analysis tools. The developed software undertakes many tasks such as communication between the external hardware and computer, transferring, monitoring, and recording the seismic data to a computer, and interpretation of the recorded data.
Maximilian Weigand, Florian M. Wagner, Jonas K. Limbrock, Christin Hilbich, Christian Hauck, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 9, 317–336, https://doi.org/10.5194/gi-9-317-2020, https://doi.org/10.5194/gi-9-317-2020, 2020
Short summary
Short summary
In times of global warming, permafrost is starting to degrade at alarming rates, requiring new and improved characterization approaches. We describe the design and test installation, as well as detailed data quality assessment, of a monitoring system used to capture natural electrical potentials in the subsurface. These self-potential signals are of great interest for the noninvasive investigation of water flow in the non-frozen or partially frozen subsurface.
Angelika Xaver, Luca Zappa, Gerhard Rab, Isabella Pfeil, Mariette Vreugdenhil, Drew Hemment, and Wouter Arnoud Dorigo
Geosci. Instrum. Method. Data Syst., 9, 117–139, https://doi.org/10.5194/gi-9-117-2020, https://doi.org/10.5194/gi-9-117-2020, 2020
Short summary
Short summary
Soil moisture plays a key role in the hydrological cycle and the climate system. Although soil moisture can be observed by the means of satellites, ground observations are still crucial for evaluating and improving these satellite products. In this study, we investigate the performance of a consumer low-cost soil moisture sensor in the lab and in the field. We demonstrate that this sensor can be used for scientific applications, for example to create a dataset valuable for satellite validation.
Qisheng Zhang, Wenhao Li, Feng Guo, Zhenzhong Yuan, Shuaiqing Qiao, and Qimao Zhang
Geosci. Instrum. Method. Data Syst., 8, 241–249, https://doi.org/10.5194/gi-8-241-2019, https://doi.org/10.5194/gi-8-241-2019, 2019
Short summary
Short summary
Complex and harsh exploration environments have put forward higher requirements for traditional geophysical exploration methods and instruments. In this study, a new distributed seismic and electrical hybrid acquisition station is developed and it can achieve high-precision hybrid acquisition of seismic and electrical data. The synchronization precision of the acquisition station is better than 200 ns and the maximum low-power data transmission speed is 16 Mbps along a 55 m cable.
Wenhao Li, Qisheng Zhang, Qimao Zhang, Feng Guo, Shuaiqing Qiao, Shiyang Liu, Yueyun Luo, Yuefeng Niu, and Xing Heng
Geosci. Instrum. Method. Data Syst., 8, 177–186, https://doi.org/10.5194/gi-8-177-2019, https://doi.org/10.5194/gi-8-177-2019, 2019
Short summary
Short summary
The nonuniqueness of geophysical inversions, which is based on a single geophysical method, is a long–standing problem in geophysical exploration. This paper developed a distributed, multi–channel, high–precision data acquisition system. It can achieve high–precision hybrid acquisition of seismic–electrical data and monitor the real–time quality of data acquisition processes using NB–IoT technology. The equivalent input noise is 0.5 μV and the synchronization accuracy is within 200 ns.
Andrew O. Hoffman, Hans Christian Steen-Larsen, Knut Christianson, and Christine Hvidberg
Geosci. Instrum. Method. Data Syst., 8, 149–159, https://doi.org/10.5194/gi-8-149-2019, https://doi.org/10.5194/gi-8-149-2019, 2019
Short summary
Short summary
We present the design considerations and deployment of an autonomous modular terrestrial rover for ice-sheet exploration that is inexpensive, easy to construct, and allows for instrumentation customization. The rover proved capable of driving over 20 km on a single charge with a drawbar pull of 250 N, which is sufficient to tow commercial ground-penetrating radars. Due to its low cost, low power requirements, and simple modular design, mass deployments of this rover design are practicable.
Sharafeldin M. Sharafeldin, Khalid S. Essa, Mohamed A. S. Youssef, Hakan Karsli, Zein E. Diab, and Nilgun Sayil
Geosci. Instrum. Method. Data Syst., 8, 29–43, https://doi.org/10.5194/gi-8-29-2019, https://doi.org/10.5194/gi-8-29-2019, 2019
Short summary
Short summary
Integrated geophysical techniques (ERT, SSR, and GPR) along the conducted profiles at the Great Pyramids of Giza have been successfully used to investigate the groundwater table and support hazard mitigation. The groundwater table elevation is 15 m under the Great Sphinx, which is safe, and at the Nazlet El-Samman it is 16–17 m.
Lichao Liu, Denys Grombacher, Esben Auken, and Jakob Juul Larsen
Geosci. Instrum. Method. Data Syst., 8, 1–11, https://doi.org/10.5194/gi-8-1-2019, https://doi.org/10.5194/gi-8-1-2019, 2019
Short summary
Short summary
This paper introcudes the design workflow and test approaches of a surface-NMR receiver. But the method and technqiues, for instance, signal loop, acqusition board, GPS synchronization, and Wi-Fi network, could also be employed in other geophysical instruments.
Shuaiqing Qiao, Hongmei Duan, Qisheng Zhang, Qimao Zhang, Shuhan Li, Shenghui Liu, Shiyang Liu, Yongqing Wang, Shichu Yan, Wenhao Li, and Feng Guo
Geosci. Instrum. Method. Data Syst., 7, 253–263, https://doi.org/10.5194/gi-7-253-2018, https://doi.org/10.5194/gi-7-253-2018, 2018
Short summary
Short summary
In this study, a high-precision distributed wireless microseismic acquisition system has been designed for oil and gas exploration. The system design, which was based on the ADS1274 chip manufactured by TI, made full use of the four channels of the chip to collect vibration signals in three directions and one electrical signal, respectively. Furthermore, the acquisition system used GPS and WIFI technologies to achieve distributed wireless acquisition.
Kazuyuki Saito, Go Iwahana, Hiroki Ikawa, Hirohiko Nagano, and Robert C. Busey
Geosci. Instrum. Method. Data Syst., 7, 223–234, https://doi.org/10.5194/gi-7-223-2018, https://doi.org/10.5194/gi-7-223-2018, 2018
Short summary
Short summary
A DTS system, using fibre-optic cables as a temperature sensor, measured surface and subsurface temperatures at a boreal forest underlain by permafrost in the interior of Alaska for 2 years every 30 min at 0.5-metre intervals along 2.7 km to monitor the daily and seasonal temperature changes, whose temperature ranges between −40 ºC in winter and 30 ºC in summer. This instrumentation illustrated characteristics of temperature variations and snow pack dynamics under different land cover types.
Fanqiang Lin, Xuben Wang, Kecheng Chen, Depan Hu, Song Gao, Xue Zou, and Cai Zeng
Geosci. Instrum. Method. Data Syst., 7, 209–221, https://doi.org/10.5194/gi-7-209-2018, https://doi.org/10.5194/gi-7-209-2018, 2018
Short summary
Short summary
The main purpose of this paper is to introduce a receiver system for the synchronous acquisition of multiple electromagnetic signals in transient electromagnetic prospecting to achieve multiparameter and multichannel synchronous reception. The reliability, practicability, and data validity of the receiver were verified by different kinds of testing. It can be used for the reception of pseudorandom signals and distributed 3-D data, which can improve geophysical exploration efficiency.
Nissaf Boudhina, Rim Zitouna-Chebbi, Insaf Mekki, Frédéric Jacob, Nétij Ben Mechlia, Moncef Masmoudi, and Laurent Prévot
Geosci. Instrum. Method. Data Syst., 7, 151–167, https://doi.org/10.5194/gi-7-151-2018, https://doi.org/10.5194/gi-7-151-2018, 2018
Short summary
Short summary
To provide reliable time series of evapotranspiration, we evaluated the performances of four different gap-filling methods when tailored to conditions of hilly crop fields. The tailoring consisted of splitting the time series beforehand on the basis of upslope and downslope winds. The obtained accuracies on evapotranspiration after gap filling were comparable to those previously reported over flat and mountainous terrains, and they were better with the most widely used gap-filling method.
Prasanna Mahavarkar, Jacob John, Vijay Dhapre, Varun Dongre, and Sachin Labde
Geosci. Instrum. Method. Data Syst., 7, 143–149, https://doi.org/10.5194/gi-7-143-2018, https://doi.org/10.5194/gi-7-143-2018, 2018
Short summary
Short summary
The authors have successfully recommissioned an unused tri-axial Helmholtz coil system. The system now serves as a national facility for calibrating magnetometers.
Martin Schrön, Steffen Zacharias, Gary Womack, Markus Köhli, Darin Desilets, Sascha E. Oswald, Jan Bumberger, Hannes Mollenhauer, Simon Kögler, Paul Remmler, Mandy Kasner, Astrid Denk, and Peter Dietrich
Geosci. Instrum. Method. Data Syst., 7, 83–99, https://doi.org/10.5194/gi-7-83-2018, https://doi.org/10.5194/gi-7-83-2018, 2018
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) is a unique technology to monitor water storages in complex environments, non-invasively, continuously, autonomuously, and representatively in large areas. However, neutron detector signals are not comparable per se: there is statistical noise, technical differences, and locational effects. We found out what it takes to make CRNS consistent in time and space to ensure reliable data quality. We further propose a method to correct for sealed areas in the footrint.
Xinyue Zhang, Qisheng Zhang, Meng Wang, Qiang Kong, Shengquan Zhang, Ruihao He, Shenghui Liu, Shuhan Li, and Zhenzhong Yuan
Geosci. Instrum. Method. Data Syst., 6, 495–503, https://doi.org/10.5194/gi-6-495-2017, https://doi.org/10.5194/gi-6-495-2017, 2017
Short summary
Short summary
We believe that our study full-waveform voltage and current recording device for MTEM transmitters makes a significant contribution to the literature because this full-waveform recording device can be used to monitor the high-power, full-waveform voltages and currents of MTEM transmitters. It has high precision, finer edge details, low noise, and other advantages. Hence, it can be used for real-time recording and transmission to the receiver for coherent demodulation.
Peter W. Thorne, Fabio Madonna, Joerg Schulz, Tim Oakley, Bruce Ingleby, Marco Rosoldi, Emanuele Tramutola, Antti Arola, Matthias Buschmann, Anna C. Mikalsen, Richard Davy, Corinne Voces, Karin Kreher, Martine De Maziere, and Gelsomina Pappalardo
Geosci. Instrum. Method. Data Syst., 6, 453–472, https://doi.org/10.5194/gi-6-453-2017, https://doi.org/10.5194/gi-6-453-2017, 2017
Short summary
Short summary
The term system-of-systems with respect to observational capabilities is frequently used, but what does it mean and how can it be assessed? Here, we define one possible interpretation of a system-of-systems architecture that is based upon demonstrable aspects of observing capabilities. We develop a set of assessment strands and then apply these to a set of atmospheric observational networks to decide which observations may be suitable for characterising satellite platforms in future work.
Alexandre Gonsette, Jean Rasson, Stephan Bracke, Antoine Poncelet, Olivier Hendrickx, and François Humbled
Geosci. Instrum. Method. Data Syst., 6, 439–446, https://doi.org/10.5194/gi-6-439-2017, https://doi.org/10.5194/gi-6-439-2017, 2017
Short summary
Short summary
Absolute magnetic measurements require the vertical and the geographic north as reference directions. We present here a novel system able to measure the direction of the magnetic field and of the vertical and true north. A design of a north seeker is proposed that takes into account sensor bias as well as misalignment errors. Different methods are derived from this model and measurement results are presented. A measurement test at high latitude is also shown.
Wilhelm Nikonow and Dieter Rammlmair
Geosci. Instrum. Method. Data Syst., 6, 429–437, https://doi.org/10.5194/gi-6-429-2017, https://doi.org/10.5194/gi-6-429-2017, 2017
Short summary
Short summary
This work describes a new approach to use fast X-ray fluorescence mapping as a tool for automated mineralogy applied on thin sections of plutonic rocks. Using a supervised classification of the spectral information, mineral maps are obtained for modal mineralogy and image analysis. The results are compared to a conventional method for automated mineralogy, which is scanning electron microscopy with mineral liberation analyzer, showing a good overall accuracy of 76 %.
E. William Worthington and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 419–427, https://doi.org/10.5194/gi-6-419-2017, https://doi.org/10.5194/gi-6-419-2017, 2017
Short summary
Short summary
We have compared two methods of performing Absolute observations of the Earth's magnetic field. The newer, Residual method was evaluated for use at USGS geomagnetic observatories and compared with measurements using the traditional Null method. A mathematical outline of the Residual method is presented, including more precise conversions of the Declination angles to nanoTeslas (nT). Results show that the Residual method is better than the Null method, especially at high latitude.
Achim Morschhauser, Gabriel Brando Soares, Jürgen Haseloff, Oliver Bronkalla, José Protásio, Katia Pinheiro, and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 367–376, https://doi.org/10.5194/gi-6-367-2017, https://doi.org/10.5194/gi-6-367-2017, 2017
Short summary
Short summary
We report on the history and recent developments of the Tatuoca magnetic observatory in Brazil. This observatory is located close to the geomagnetic equator and within a region of strong main field dynamics. Starting from 2015, we have installed new instrumentation and a new datalogger system. In the paper, we also comment on the challenges of doing absolute measurements at the geomagnetic equator.
Antoine Poncelet, Alexandre Gonsette, and Jean Rasson
Geosci. Instrum. Method. Data Syst., 6, 353–360, https://doi.org/10.5194/gi-6-353-2017, https://doi.org/10.5194/gi-6-353-2017, 2017
Short summary
Short summary
In this paper, we give some background on calibration and verification of our automatic DI-flux instrument and then compare the automatic absolute magnetic measurements
with the human-made and discuss the advantages and disadvantages of automatic measurements.
Alexandre Gonsette, Jean Rasson, and François Humbled
Geosci. Instrum. Method. Data Syst., 6, 361–366, https://doi.org/10.5194/gi-6-361-2017, https://doi.org/10.5194/gi-6-361-2017, 2017
Short summary
Short summary
We present a novel method for calibrating magnetic observatories. We show how magnetometer baselines can highlight a possible calibration error. We also provide a method based on high-frequency automatic absolute measurements. This method determines a transformation matrix for correcting raw data suffering from scale factor and orientation errors. We finally present a practical case where covered data have been successfully compared to those coming from a reference magnetometer.
Achim Morschhauser, Jürgen Haseloff, Oliver Bronkalla, Carsten Müller-Brettschneider, and Jürgen Matzka
Geosci. Instrum. Method. Data Syst., 6, 345–352, https://doi.org/10.5194/gi-6-345-2017, https://doi.org/10.5194/gi-6-345-2017, 2017
Short summary
Short summary
A modern geomagnetic observatory is expected to record geomagnetic data with high stability, high resolution, and high reliability. Also, geomagnetic observatories may be located in remote areas, requiring low power consumption and simple maintenance. Here, we present a new data logger system that was designed to meet these criteria. This system is based on a Raspberry Pi embedded PC and includes a modular C++ software package which can be adapted to specific observatory setups.
Xinyue Zhang, Qisheng Zhang, Xiao Zhao, Qimao Zhang, Shenghui Liu, Shuhan Li, and Zhenzhong Yuan
Geosci. Instrum. Method. Data Syst., 6, 209–215, https://doi.org/10.5194/gi-6-209-2017, https://doi.org/10.5194/gi-6-209-2017, 2017
Short summary
Short summary
In this study, we propose a more accurate method for calculating the current velocity from the nanovolt-scale current-induced electric field as measured using an expendable current profiler (XCP). In order to confirm the accuracy of the proposed data processing method, a sea test was performed, wherein ocean current/electric field data were collected from the sea surface to a depth of 1000 m using an XCP.
Thomas Albin, Detlef Koschny, Sirko Molau, Ralf Srama, and Björn Poppe
Geosci. Instrum. Method. Data Syst., 6, 125–140, https://doi.org/10.5194/gi-6-125-2017, https://doi.org/10.5194/gi-6-125-2017, 2017
Short summary
Short summary
The Canary Islands Long-Baseline Observatory (CILBO) is a stereoscopic camera setup on the Canary Islands Tenerife and La Palma. Both cameras observe the same volume in the sky to determine high-precision orbits of entering meteoroids. Both cameras are identical; however they show different brightness or velocity distributions of the observed meteors. This work analyses different observational bias effects to determine and understand, e.g. camera pointing or observation time-dependent effects.
Fred Sigernes, Pål Gunnar Ellingsen, Noora Partamies, Mikko Syrjäsuo, Pål Brekke, Silje Eriksen Holmen, Arne Danielsen, Bernt Olsen, Xiangcai Chen, Margit Dyrland, Lisa Baddeley, Dag Arne Lorentzen, Marcus Aleksander Krogtoft, Torstein Dragland, Hans Mortensson, Lisbeth Smistad, Craig J. Heinselman, and Shadia Habbal
Geosci. Instrum. Method. Data Syst., 6, 9–14, https://doi.org/10.5194/gi-6-9-2017, https://doi.org/10.5194/gi-6-9-2017, 2017
Short summary
Short summary
The total solar eclipse event on Svalbard on 20 March 2015 gave us a unique opportunity to image the upper parts of the Sun's atmosphere. A novel image accumulation filter technique is presented that is capable of distinguishing features such as loops, spicules, plumes, and prominences from intense and blurry video recordings of the chromosphere.
Timo Sukuvaara, Kari Mäenpää, and Riika Ylitalo
Geosci. Instrum. Method. Data Syst., 5, 513–520, https://doi.org/10.5194/gi-5-513-2016, https://doi.org/10.5194/gi-5-513-2016, 2016
Short summary
Short summary
FMI's combined road weather station (RWS) and roadside unit (RSU) in Sodankylä is a unique research platform combining very advanced road weather measurements with a versatile collection of the most common wireless communication methodologies used in a vehicular environment. Together with harsh Arctic road weather conditions it represents an incomparable development environment and pilot RWS station within the field of intelligent transport systems and vehicular networking.
Cited articles
Allan, D.: Statistics of atomic frequency standards, Proc. IEEE, 54, 221–230, https://doi.org/10.1109/proc.1966.4634, 1966. a
Bodart, Q., Merlet, S., Malossi, N., Santos, F. P. D., Bouyer, P., and Landragin, A.: A cold atom pyramidal gravimeter with a single laser beam, Appl. Phys. Lett., 96, 134101, https://doi.org/10.1063/1.3373917, 2010. a
Bonvalot, S., Diament, M., and Gabalda, G.: Continuous gravity recording with Scintrex CG-3M meters: a promising tool for monitoring active zones, Geophys. J. Int., 135, 470–494, https://doi.org/10.1046/j.1365-246x.1998.00653.x, 1998. a
Boy, J.-P. and Hinderer, J.: Study of the seasonal gravity signal in superconducting gravimeter data, J. Geodyn., 41, 227–233, https://doi.org/10.1016/j.jog.2005.08.035, 2006. a
Boy, J. P. and Lyard, F.: High-frequency non-tidal ocean loading effects on surface gravity measurements, Geophys. J. Int., 175, 35–45, https://doi.org/10.1111/j.1365-246x.2008.03895.x, 2008. a
Boy, J.-P., Longuevergne, L., Boudin, F., Jacob, T., Lyard, F., Llubes, M., Florsch, N., and Esnoult, M.-F.: Modelling atmospheric and induced non-tidal oceanic loading contributions to surface gravity and tilt measurements, J. Geodyn., 48, 182–188, https://doi.org/10.1016/j.jog.2009.09.022, 2009. a
Camp, M. V. and Vauterin, P.: Tsoft: graphical and interactive software for the analysis of time series and Earth tides, Comput. Geosci., 31, 631–640, https://doi.org/10.1016/j.cageo.2004.11.015, 2005. a
Camp, M. V., de Viron, O., Scherneck, H.-G., Hinzen, K.-G., Williams, S. D. P., Lecocq, T., Quinif, Y., and Camelbeeck, T.: Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe, J. Geophys. Res., 116, B08402, https://doi.org/10.1029/2010jb008174, 2011. a
Carbone, D., Poland, M. P., Diament, M., and Greco, F.: The added value of time-variable microgravimetry to the understanding of how volcanoes work, Earth-Sci. Rev., 169, 146–179, https://doi.org/10.1016/j.earscirev.2017.04.014, 2017. a
Carbone, D., Cannavò, F., Greco, F., Messina, A., Contrafatto, D., Siligato, G., Lautier-Gaud, J., Antoni-Micollier, L., Hammond, G., Middlemiss, R., Toland, K., de Zeeuw–van Dalfsen, E., Koymans, M., Rivalta, E., Nikkhoo, M., Bonadonna, C., and Frischknecht, C.: The NEWTON-g “gravity imager”: a new window into processes involving subsurface fluids, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16329, https://doi.org/10.5194/egusphere-egu2020-16329, 2020 a
Cooke, A.-K., Champollion, C., and Le Moigne, N.: AQG#B Data sets, Zenodo, https://doi.org/10.5281/zenodo.4279110, 2020. a
Cooke, A.-K., Champollion, C., Janvier, C., Vermeulen, P., Le Moigne, N., and Merlet, S.: On the potential of vertical gravity gradients for soil moisture monitoring, J. Geodesy, submitted, 2021. a
Creutzfeldt, B., Güntner, A., Klügel, T., and Wziontek, H.: Simulating the influence of water storage changes on the superconducting gravimeter of the Geodetic Observatory Wettzell, Germany, Geophysics, 73, WA95–WA104, https://doi.org/10.1190/1.2992508, 2008. a, b
Creutzfeldt, B., Güntner, A., Thoss, H., Merz, B., and Wziontek, H.: Measuring the effect of local water storage changes on in situ gravity observations: Case study of the Geodetic Observatory Wettzell, Germany, Water Resour. Res., 46, W08531, https://doi.org/10.1029/2009wr008359, 2010. a
Crossley, D., Hinderer, J., and Riccardi, U.: The measurement of surface gravity, Rep. Prog. Phys., 76, 046101, https://doi.org/10.1088/0034-4885/76/4/046101, 2013. a
Deville, S., Jacob, T., Chéry, J., and Champollion, C.: On the impact of topography and building mask on time varying gravity due to local hydrology, Geophys. J. Int., 192, 82–93, https://doi.org/10.1093/gji/ggs007, 2012. a, b
Ferguson, J. F., Chen, T., Brady, J., Aiken, C. L., and Seibert, J.: The 4D microgravity method for waterflood surveillance: Part II – Gravity measurements for the Prudhoe Bay reservoir, Alaska, Geophysics, 72, I33–I43, https://doi.org/10.1190/1.2435473, 2007. a
Fores, B., Champollion, C., Moigne, N. L., Bayer, R., and Chéry, J.: Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification, Geophys. J. Int., 208, 269–280, https://doi.org/10.1093/gji/ggw396, 2016a. a, b, c, d, e, f, g
Fores, B., Champollion, C., Moigne, N. L., and Chery, J.: Impact of ambient temperature on spring-based relative gravimeter measurements, J. Geod., 91, 269–277, https://doi.org/10.1007/s00190-016-0961-2, 2016b. a, b
Fores, B., Champollion, C., Mainsant, G., Albaric, J., and Fort, A.: Monitoring Saturation Changes with Ambient Seismic Noise and Gravimetry in a Karst Environment, Vadose Zone J., 17, 170 163, https://doi.org/10.2136/vzj2017.09.0163, 2018. a, b
Fores, B., Klein, G., Moigne, N. L., and Francis, O.: Long-Term Stability of Tilt-Controlled gPhoneX Gravimeters, J. Geophys. Res.-Sol. Ea., 124, 12264–12276, https://doi.org/10.1029/2019jb018276, 2019. a
Francis, O., Baumann, H., Volarik, T., Rothleitner, C., Klein, G., Seil, M., Dando, N., Tracey, R., Ullrich, C., Castelein, S., Hua, H., Kang, W., Chongyang, S., Songbo, X., Hongbo, T., Zhengyuan, L., Pálinkás, V., Kostelecký, J., Mäkinen, J., Näränen, J., Merlet, S., Farah, T., Guerlin, C., Santos, F. P. D., Moigne, N. L., Champollion, C., Deville, S., Timmen, L., Falk, R., Wilmes, H., Iacovone, D., Baccaro, F., Germak, A., Biolcati, E., Krynski, J., Sekowski, M., Olszak, T., Pachuta, A., Agren, J., Engfeldt, A., Reudink, R., Inacio, P., McLaughlin, D., Shannon, G., Eckl, M., Wilkins, T., van Westrum, D., and Billson, R.: The European Comparison of Absolute Gravimeters 2011 (ECAG-2011) in Walferdange, Luxembourg: results and recommendations, Metrologia, 50, 257–268, https://doi.org/10.1088/0026-1394/50/3/257, 2013. a
Freier, C., Hauth, M., Schkolnik, V., Leykauf, B., Schilling, M., Wziontek, H., Scherneck, H.-G., Müller, J., and Peters, A.: Mobile quantum gravity sensor with unprecedented stability, J. Phys. Conf. Ser., 723, 012050, https://doi.org/10.1088/1742-6596/723/1/012050, 2016. a
Gaillardet, J., Braud, I., Hankard, F., Anquetin, S., Bour, O., Dorfliger, N., de Dreuzy, J., Galle, S., Galy, C., Gogo, S., Gourcy, L., Habets, F., Laggoun, F., Longuevergne, L., Borgne, T. L., Naaim-Bouvet, F., Nord, G., Simonneaux, V., Six, D., Tallec, T., Valentin, C., Abril, G., Allemand, P., Arènes, A., Arfib, B., Arnaud, L., Arnaud, N., Arnaud, P., Audry, S., Comte, V. B., Batiot, C., Battais, A., Bellot, H., Bernard, E., Bertrand, C., Bessière, H., Binet, S., Bodin, J., Bodin, X., Boithias, L., Bouchez, J., Boudevillain, B., Moussa, I. B., Branger, F., Braun, J. J., Brunet, P., Caceres, B., Calmels, D., Cappelaere, B., Celle-Jeanton, H., Chabaux, F., Chalikakis, K., Champollion, C., Copard, Y., Cotel, C., Davy, P., Deline, P., Delrieu, G., Demarty, J., Dessert, C., Dumont, M., Emblanch, C., Ezzahar, J., Estèves, M., Favier, V., Faucheux, M., Filizola, N., Flammarion, P., Floury, P., Fovet, O., Fournier, M., Francez, A. J., Gandois, L., Gascuel, C., Gayer, E., Genthon, C., Gérard, M. F., Gilbert, D., Gouttevin, I., Grippa, M., Gruau, G., Jardani, A., Jeanneau, L., Join, J. L., Jourde, H., Karbou, F., Labat, D., Lagadeuc, Y., Lajeunesse, E., Lastennet, R., Lavado, W., Lawin, E., Lebel, T., Bouteiller, C. L., Legout, C., Lejeune, Y., Meur, E. L., Moigne, N. L., Lions, J., Lucas, A., Malet, J. P., Marais-Sicre, C., Maréchal, J. C., Marlin, C., Martin, P., Martins, J., Martinez, J. M., Massei, N., Mauclerc, A., Mazzilli, N., Molénat, J., Moreira-Turcq, P., Mougin, E., Morin, S., Ngoupayou, J. N., Panthou, G., Peugeot, C., Picard, G., Pierret, M. C., Porel, G., Probst, A., Probst, J. L., Rabatel, A., Raclot, D., Ravanel, L., Rejiba, F., René, P., Ribolzi, O., Riotte, J., Rivière, A., Robain, H., Ruiz, L., Sanchez-Perez, J. M., Santini, W., Sauvage, S., Schoeneich, P., Seidel, J. L., Sekhar, M., Sengtaheuanghoung, O., Silvera, N., Steinmann, M., Soruco, A., Tallec, G., Thibert, E., Lao, D. V., Vincent, C., Viville, D., Wagnon, P., and Zitouna, R.: OZCAR: The French Network of Critical Zone Observatories, Vadose Zone J., 17, 180067, https://doi.org/10.2136/vzj2018.04.0067, 2018. a
Geiger, R., Landragin, A., Merlet, S., and Santos, F. P. D.: High-accuracy inertial measurements with cold-atom sensors, AVS Quantum Sci., 2, 024702, https://doi.org/10.1116/5.0009093, 2020. a, b
Gillot, P., Francis, O., Landragin, A., Santos, F. P. D., and Merlet, S.: Stability comparison of two absolute gravimeters: optical versus atomic interferometers, Metrologia, 51, L15–L17, https://doi.org/10.1088/0026-1394/51/5/l15, 2014. a, b
Güntner, A., Reich, M., Mikolaj, M., Creutzfeldt, B., Schroeder, S., and Wziontek, H.: Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure, Hydrol. Earth Syst. Sci., 21, 3167–3182, https://doi.org/10.5194/hess-21-3167-2017, 2017. a
Hauth, M., Freier, C., Schkolnik, V., Senger, A., Schmidt, M., and Peters, A.: First gravity measurements using the mobile atom interferometer GAIN, Appl. Phys. B, 113, 49–55, https://doi.org/10.1007/s00340-013-5413-6, 2013. a
Hector, B. and Hinderer, J.: pyGrav, a Python-based program for handling and processing relative gravity data, Comput. Geosci., 91, 90–97, https://doi.org/10.1016/j.cageo.2016.03.010, 2016. a, b
Hector, B., Hinderer, J., Séguis, L., Boy, J.-P., Calvo, M., Descloitres, M., Rosat, S., Galle, S., and Riccardi, U.: Hydro-gravimetry in West-Africa: First results from the Djougou (Benin) superconducting gravimeter, J. Geodyn., 80, 34–49, https://doi.org/10.1016/j.jog.2014.04.003, 2014. a, b
Hector, B., Séguis, L., Hinderer, J., Cohard, J.-M., Wubda, M., Descloitres, M., Benarrosh, N., and Boy, J.-P.: Water storage changes as a marker for base flow generation processes in a tropical humid basement catchment (Benin): Insights from hybrid gravimetry, Water Resour. Res., 51, 8331–8361, https://doi.org/10.1002/2014wr015773, 2015. a
Hinderer, J., Crossley, D., and Warburton, R.: Superconducting Gravimetry, in: Treatise on Geophysics, 59–115, Elsevier, Oxford, UK, https://doi.org/10.1016/b978-0-444-53802-4.00062-2, 2015. a
Hinze, W. J., Von Frese, R. R., and Saad, A. H.: Gravity and magnetic exploration: Principles, practices, and applications, Cambridge University Press, New York, 2013. a
Huang, P.-W., Tang, B., Chen, X., Zhong, J.-Q., Xiong, Z.-Y., Zhou, L., Wang, J., and Zhan, M.-S.: Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters, Metrologia, 56, 045012, https://doi.org/10.1088/1681-7575/ab2f01, 2019. a
Hwang, C., Cheng, T.-C., Cheng, C., and Hung, W.: Land subsidence using absolute and relative gravimetry: a case study in central Taiwan, Surv. Rev., 42, 27–39, https://doi.org/10.1179/003962609x451672, 2010. a
Imanishi, Y.: A Network of Superconducting Gravimeters Detects Submicrogal Coseismic Gravity Changes, Science, 306, 476–478, https://doi.org/10.1126/science.1101875, 2004. a
Jacob, T., Bayer, R., Chery, J., Jourde, H., Moigne, N. L., Boy, J.-P., Hinderer, J., Luck, B., and Brunet, P.: Absolute gravity monitoring of water storage variation in a karst aquifer on the larzac plateau (Southern France), J. Hydrol., 359, 105–117, https://doi.org/10.1016/j.jhydrol.2008.06.020, 2008. a
Jacob, T., Bayer, R., Chery, J., and Moigne, N. L.: Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer, J. Geophys. Res., 115, B06402, https://doi.org/10.1029/2009jb006616, 2010. a, b, c, d
Jiang, Z., Pálinkáš, V., Arias, F. E., Liard, J., Merlet, S., Wilmes, H., Vitushkin, L., Robertsson, L., Tisserand, L., Santos, F. P. D., Bodart, Q., Falk, R., Baumann, H., Mizushima, S., Mäkinen, J., Bilker-Koivula, M., Lee, C., Choi, I. M., Karaboce, B., Ji, W., Wu, Q., Ruess, D., Ullrich, C., Kostelecký, J., Schmerge, D., Eckl, M., Timmen, L., Moigne, N. L., Bayer, R., Olszak, T., Ågren, J., Negro, C. D., Greco, F., Diament, M., Deroussi, S., Bonvalot, S., Krynski, J., Sekowski, M., Hu, H., Wang, L. J., Svitlov, S., Germak, A., Francis, O., Becker, M., Inglis, D., and Robinson, I.: The 8th International Comparison of Absolute Gravimeters 2009: the first Key Comparison (CCM.G-K1) in the field of absolute gravimetry, Metrologia, 49, 666–684, https://doi.org/10.1088/0026-1394/49/6/666, 2012. a
Kennedy, J., Ferré, T. P. A., and Creutzfeldt, B.: Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone, Water Resour. Res., 52, 7244–7261, https://doi.org/10.1002/2016wr018770, 2016. a
Kennedy, J. R. and Ferré, T. P.: Accounting for time- and space-varying changes in the gravity field to improve the network adjustment of relative-gravity data, Geophys. J. Int., 204, 892–906, https://doi.org/10.1093/gji/ggv493, 2015. a, b
Louchet-Chauvet, A., Farah, T., Bodart, Q., Clairon, A., Landragin, A., Merlet, S., and Santos, F. P. D.: The influence of transverse motion within an atomic gravimeter, New J. Phys., 13, 065025, https://doi.org/10.1088/1367-2630/13/6/065025, 2011. a, b, c, d
Mazzotti, S., Lambert, A., Henton, J., James, T. S., and Courtier, N.: Absolute gravity calibration of GPS velocities and glacial isostatic adjustment in mid-continent North America, Geophys. Res. Lett., 38, L24311, https://doi.org/10.1029/2011gl049846, 2011. a
Ménoret, V., Vermeulen, P., Moigne, N. L., Bonvalot, S., Bouyer, P., Landragin, A., and Desruelle, B.: Gravity measurements below 10–9 g with a transportable absolute quantum gravimeter, Sci. Rep., 8, 12300, https://doi.org/10.1038/s41598-018-30608-1, 2018. a, b
Merlet, S., Bodart, Q., Malossi, N., Landragin, A., Santos, F. P. D., Gitlein, O., and Timmen, L.: Comparison between two mobile absolute gravimeters: optical versus atomic interferometers, Metrologia, 47, L9–L11, https://doi.org/10.1088/0026-1394/47/4/l01, 2010. a
Mollenhauer, H., Kasner, M., Haase, P., Peterseil, J., Wohner, C., Frenzel, M., Mirtl, M., Schima, R., Bumberger, J., and Zacharias, S.: Long-term environmental monitoring infrastructures in Europe: observations, measurements, scales, and socio-ecological representativeness, Sci. Total Environ., 624, 968–978, https://doi.org/10.1016/j.scitotenv.2017.12.095, 2018. a
Niebauer, T. M., Sasagawa, G. S., Faller, J. E., Hilt, R., and Klopping, F.: A new generation of absolute gravimeters, Metrologia, 32, 159–180, https://doi.org/10.1088/0026-1394/32/3/004, 1995. a
Olsson, P.-A., Breili, K., Ophaug, V., Steffen, H., Bilker-Koivula, M., Nielsen, E., Oja, T., and Timmen, L.: Postglacial gravity change in Fennoscandia – three decades of repeated absolute gravity observations, Geophys. J. Int., 217, 1141–1156, https://doi.org/10.1093/gji/ggz054, 2019. a
Pearson-Grant, S., Franz, P., and Clearwater, J.: Gravity measurements as a calibration tool for geothermal reservoir modelling, Geothermics, 73, 146–157, https://doi.org/10.1016/j.geothermics.2017.06.006, 2018. a
Peters, A., Chung, K. Y., and Chu, S.: High-precision gravity measurements using atom interferometry, Metrologia, 38, 25–61, https://doi.org/10.1088/0026-1394/38/1/4, 2001. a, b, c
Reich, M. and Güntner, A.: A concept of hybrid terrestrial gravimetry and cosmic ray neutron sensing for investigating hydrological extreme events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13624, https://doi.org/10.5194/egusphere-egu2020-13624, 2020. a
Reich, M., Mikolaj, M., Blume, T., and Güntner, A.: Reducing gravity data for the influence of water storage variations beneath observatory buildings, Geophysics, 84, EN15–EN31, https://doi.org/10.1190/geo2018-0301.1, 2019. a
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/bams-85-3-381, 2004.
a
Scherneck, H.-G., Rajner, M., and Engfeldt, A.: Superconducting gravimeter and seismometer shedding light on FG5's offsets, trends and noise: what observations at Onsala Space Observatory can tell us, J. Geod., 94, 80, https://doi.org/10.1007/s00190-020-01409-0, 2020. a
Sugihara, M., Nishi, Y., Ikeda, H., Nawa, K., and Ishido, T.: Monitoring CO2 Injection at the Tomakomai Field Using High-sensitivity Continuous Gravimetry, Energy Procedia, 114, 4020–4027, https://doi.org/10.1016/j.egypro.2017.03.1542, 2017. a
Van Camp, M., de Viron, O., Pajot-Métivier, G., Casenave, F., Watlet, A., Dassargues, A., and Vanclooster, M.: Direct measurement of evapotranspiration from a forest using a superconducting gravimeter, Geophys. Res. Lett., 43, 10–225, https://doi.org/10.1002/2016GL070534, 2016. a
Van Camp, M., de Viron, O., Watlet, A., Meurers, B., Francis, O., and Caudron, C.: Geophysics From Terrestrial Time-Variable Gravity Measurements, Rev. Geophys., 55, 938–992, https://doi.org/10.1002/2017rg000566, 2017. a, b
Volcke, P., Pequegnat, C., Brichet-Billet, B., Lecointre, A., Wolyniec, D., and Guéguen, P.: RESIF national datacentre: new features and upcoming evolutions,
Geophys. Res. Abstr.,
EGU2014-12270, EGU General Assembly 2014, Vienna, Austria, 2014. a
Wenzel, H.-G.: The nanogal software: Earth tide data processing package ETERNA 3.30, Bull. Inf. Marées Terrestres, 124, 9425–9439, 1996. a
Wu, S., Fend, J., Li, C., Su, D., Wand, Q., Hu, R., Hu, L., Xu, J., Ji, W., Ullrich, C., Pálinkáš, V., Kostelecký, J., Bilker-Koivula, M., Näränen, J., Merlet, S., Moigne, N. L., Mizushima, S., Francis, O., Choi, I.-M., Kim, M.-S., Alotaibi, H. M., Aljuwayr, A., Baumann, H., Priruenrom, T., Woradet, N., KIRBAŞ, C., Coşkun, İ., and Newel, D.: The results of CCM.G-K2.2017 key comparison, Metrologia, 57, 07002, https://doi.org/10.1088/0026-1394/57/1a/07002, 2020. a
Short summary
Gravimetry studies the variations of the Earth’s gravity field which can be linked to mass changes studied in various disciplines of the Earth sciences. The gravitational attraction of the Earth is measured with gravimeters. Quantum gravimeters allow for continuous, high-frequency absolute gravity monitoring while remaining user-friendly and transportable. We assess the capacity of the AQG#B01, developed by Muquans, as a field gravimeter for hydrogeophysical applications.
Gravimetry studies the variations of the Earth’s gravity field which can be linked to mass...