Articles | Volume 10, issue 1
https://doi.org/10.5194/gi-10-91-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gi-10-91-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Design and implementation of the detection software of a wireless microseismic acquisition station based on the Android platform
Qimao Zhang
Aerospace Information Research Institute, Chinese Academy of
Sciences, Beijing, China
Shuaiqing Qiao
School of Geophysics and Information Technology, China University of
Geosciences, Beijing, China
School of Geophysics and Information Technology, China University of
Geosciences, Beijing, China
Shiyang Liu
School of Geophysics and Information Technology, China University of
Geosciences, Beijing, China
Related authors
Qimao Zhang, Keyu Zhou, Ming Deng, Ling Huang, Cheng Li, and Qisheng Zhang
Geosci. Instrum. Method. Data Syst., 14, 55–67, https://doi.org/10.5194/gi-14-55-2025, https://doi.org/10.5194/gi-14-55-2025, 2025
Short summary
Short summary
We developed a software system for a high-precision magnetometer platform, specifically designed for human-occupied vehicles (HOVs). The system integrates magnetometers to deliver accurate magnetic field detection, with advanced features such as automatic probe switching and magnetic compensation. The system's performance was validated through rigorous laboratory tests and marine experiments on the Shenhai Yongshi platform.
Xiyuan Zhang, Qisheng Zhang, Zucan Lin, Huiying Li, Xinchang Wang, and Hui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2970, https://doi.org/10.5194/egusphere-2025-2970, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
We addressed limitations in mineral exploration tools: poor shallow-depth imaging, complex controls, and inefficient data transmission. Our solution combining advanced hardware and intelligent software, it ensures stable high-speed data flow, enables remote control/real-time viewing anywhere, and operates reliably in diverse field conditions. Successfully tested in a Chinese mining area, it provides geologists with a more powerful, user-friendly tool for underground mapping.
Hongjie Zheng, Yongqing Wang, Qisheng Zhang, Zewen Li, and Lin Chao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2884, https://doi.org/10.5194/egusphere-2025-2884, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
Our research has developed a new algorithm to improve microseismic signal picking in oil and gas exploration. We use a group theory-based optimization algorithm (GTOA) for signal clustering, combined with the Akaike Information Criterion (AIC) for precise signal picking. Experiments demonstrate that the GTOA algorithm shows better clustering performance across multiple datasets, and the designed algorithm achieves more accurate signal picking under low signal-to-noise ratio conditions.
Qimao Zhang, Keyu Zhou, Ming Deng, Ling Huang, Cheng Li, and Qisheng Zhang
Geosci. Instrum. Method. Data Syst., 14, 55–67, https://doi.org/10.5194/gi-14-55-2025, https://doi.org/10.5194/gi-14-55-2025, 2025
Short summary
Short summary
We developed a software system for a high-precision magnetometer platform, specifically designed for human-occupied vehicles (HOVs). The system integrates magnetometers to deliver accurate magnetic field detection, with advanced features such as automatic probe switching and magnetic compensation. The system's performance was validated through rigorous laboratory tests and marine experiments on the Shenhai Yongshi platform.
Zucan Lin, Qisheng Zhang, Keyu Zhou, Xiyuan Zhang, Xinchang Wang, Hui Zhang, and Feng Liu
Geosci. Instrum. Method. Data Syst., 13, 325–336, https://doi.org/10.5194/gi-13-325-2024, https://doi.org/10.5194/gi-13-325-2024, 2024
Short summary
Short summary
This paper describes the development of a controlled-source ultra-audio frequency electromagnetic receiver based on remote wireless communication technology for use in geophysical prospecting. Our design successfully addresses several shortcomings of such instruments currently available on the market, including their weight, limitations in data acquisition frequency, and difficulty in connecting to the internet for remote monitoring.
Feng Guo, Qisheng Zhang, and Shenghui Liu
Geosci. Instrum. Method. Data Syst., 12, 111–120, https://doi.org/10.5194/gi-12-111-2023, https://doi.org/10.5194/gi-12-111-2023, 2023
Short summary
Short summary
We propose a new type of power station unit with wireless data transmission capability, which was not supported by same type of instrument as on the market. Based on this, a novel distributed geophysical data acquisition architecture is also proposed. The proposed instrument loads more stations than the industry-leading LAUL-428 while providing additional wireless data transmission and narrowband Internet of Things remote control.
Keyu Zhou, Qisheng Zhang, Guangyuan Chen, Zucan Lin, Yunliang Liu, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 12, 57–69, https://doi.org/10.5194/gi-12-57-2023, https://doi.org/10.5194/gi-12-57-2023, 2023
Short summary
Short summary
The expendable current profiler (XCP) is a single-use instrument that rapidly measures currents, including the velocity, flow direction, and temperature of seawater. This study improves upon the design of the XCP to reduce the cost of the single-use devices. This has been achieved by adopting signal modulation and demodulation to transmit analog signals on an enamelled wire and digitizing the signal above the surface of the water.
Keyu Zhou, Qisheng Zhang, Yongdong Liu, Zhen Wu, Zucan Lin, Bentian Zhao, Xingyuan Jiang, and Pengyu Li
Geosci. Instrum. Method. Data Syst., 10, 141–151, https://doi.org/10.5194/gi-10-141-2021, https://doi.org/10.5194/gi-10-141-2021, 2021
Short summary
Short summary
This paper describes the development of a new multifunctional four-dimensional high-density electrical instrument based on remote wireless communication technology, for use in shallow geophysical prospecting. We carried out a lot of tests. Our design successfully addresses a number of shortcomings of such instruments currently available on the market, including bulkiness, weight, limitations in data acquisition accuracy, and difficulty of connecting to the Internet for remote monitoring.
Cited articles
Alkhalifah, T. and Plessix, R.: A recipe for practical fullwaveform
inversion in anisotropic media: An Analytical Parameter resolution study, Geophysics,
79, R91–R101, 2014.
Bayuk, I. O.: Why anisotropy is important for Location of Microearthquake
Events in Shale, SEG Technical Program Expanded Abstracts 2009, Society of Exploration Geophysicists, 1632–1636, 2009.
Geiger, L.: Probability method for the determination of earthquake
epicenters from the arrival time only, Bulletin of Saint Louis University, 8, 60–71, 1912.
Kurzon, I., Lyakhovsky, V., and Ben-Zion, Y.: Dynamic rupture and seismic
radiation in a damage-breakage rheology model, Pure Appl. Geophys., 176, 1003–1020, 2018.
Liu, J., Song, L.-J., Lan, L., and Li, Y.-F.: Design and implementation
of earthquake quick-report system based on android platform, Inland
Earthquake, 28, 366–371, 2014.
Liu, Y.-L., Tian, Y., Feng, X., Zhen, Q., and Chi, H.-Z.: Review of microseism technology and its application, Prog. Geophys., 28, 1801–1808,
2013.
Mazza, S., Basili, A., Bono, A., Lauciani, V., Mandiello, A. G., Marcocci, C., Mele, F. M., Pintore, S., Quintiliani, M., Scognamiglio, L., and Selvaggi, G.: AIDA–Seismic data
acquisition, processing, storageand distribution at the National
Earthquake Center, INGV, Ann. Geophys.-Italy, 55, 541–548,
2012.
Meles, G. A., Van der Kruk, J., Greenhalgh, S. A., Ernst, J. R.,
Maurer, H., and Greenhalgh, S. A.: A new vector waveform inversion algorithm for
simultaneous updating of conductivity and permittivity parameters from
combination crosshole/borehole-to-surface GPR data, IEEE T. Geosci. Remote Sens.,
48, 3391–3407, 2010.
Mulargia, F., Castellaro, S. S., and Ciccotti, M.: Earthquakes as three
stage processes, Geophys. J. Int., 158, 98–108, 2004.
Pavlova, A., Hrytsai, O., and Malytskyy, D.: Determining the focal mechanisms of the events in the Carpathian region of Ukraine, Geosci. Instrum. Method. Data Syst., 3, 229–239, https://doi.org/10.5194/gi-3-229-2014, 2014.
Qiao, S., Duan, H., Zhang, Q., Zhang, Q., Li, S., Liu, S., Liu, S., Wang, Y., Yan, S., Li, W., and Guo, F.: Development of high-precision distributed wireless microseismic acquisition stations, Geosci. Instrum. Method. Data Syst., 7, 253–263, https://doi.org/10.5194/gi-7-253-2018, 2018.
Thorne, P. W., Madonna, F., Schulz, J., Oakley, T., Ingleby, B., Rosoldi, M., Tramutola, E., Arola, A., Buschmann, M., Mikalsen, A. C., Davy, R., Voces, C., Kreher, K., De Maziere, M., and Pappalardo, G.: Making better sense of the mosaic of environmental measurement networks: a system-of-systems approach and quantitative assessment, Geosci. Instrum. Method. Data Syst., 6, 453–472, https://doi.org/10.5194/gi-6-453-2017, 2017.
Willett, K., Williams, C., Jolliffe, I. T., Lund, R., Alexander, L. V., Brönnimann, S., Vincent, L. A., Easterbrook, S., Venema, V. K. C., Berry, D., Warren, R. E., Lopardo, G., Auchmann, R., Aguilar, E., Menne, M. J., Gallagher, C., Hausfather, Z., Thorarinsdottir, T., and Thorne, P. W.: A framework for benchmarking of homogenisation algorithm performance on the global scale, Geosci. Instrum. Method. Data Syst., 3, 187–200, https://doi.org/10.5194/gi-3-187-2014, 2014.
Zhang, Q., Jiang, J., Zhai, J., Zhang, X., Yuan, Y., and
Huang, X.: Seismic Random Noise Attenuation Using Modified Wavelet
Thresholding, Ann. Geophys.-Italy, 59, 1–10, 2016.
Zhang, Q.-S., Deng, M., Guo, J., Luo, W.-B., Wang, Q., and Feng,
Y.-Q.: Development of a new seismic-data acquisition station based on
system-on-a-programmable-chip technology, Ann. Geophys.-Italy, 56, 1–8, 2013.
Short summary
In order to meet the needs of geophysical exploration, the requirements of intelligent and convenient exploration instruments are realized. From the perspective of software, this research combines today's wireless transmission technology to integrate applications into mobile phones to realize remote control of field operations. It provides a new idea for geophysical exploration.
In order to meet the needs of geophysical exploration, the requirements of intelligent and...