Articles | Volume 12, issue 1
https://doi.org/10.5194/gi-12-45-2023
https://doi.org/10.5194/gi-12-45-2023
Research article
 | 
30 Jan 2023
Research article |  | 30 Jan 2023

Calculation of soil water content using dielectric-permittivity-based sensors – benefits of soil-specific calibration

Bartosz M. Zawilski, Franck Granouillac, Nicole Claverie, Baptiste Lemaire, Aurore Brut, and Tiphaine Tallec

Related authors

Ultra-low-cost manual soil respiration chamber
Bartosz M. Zawilski and Vincent Bustillo
Geosci. Instrum. Method. Data Syst., 13, 51–62, https://doi.org/10.5194/gi-13-51-2024,https://doi.org/10.5194/gi-13-51-2024, 2024
Short summary
The soil heat flux sensor functioning checks, imbalances' origins, and forgotten energies
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 223–234, https://doi.org/10.5194/gi-11-223-2022,https://doi.org/10.5194/gi-11-223-2022, 2022
Short summary
Wind speed influences corrected Autocalibrated Soil Evapo-respiration Chamber (ASERC) evaporation measures
Bartosz M. Zawilski
Geosci. Instrum. Method. Data Syst., 11, 163–182, https://doi.org/10.5194/gi-11-163-2022,https://doi.org/10.5194/gi-11-163-2022, 2022
Short summary
On evapotranspiration and eddy covariance measurements corrections
Bartosz M. Zawilski
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-43,https://doi.org/10.5194/bg-2020-43, 2020
Preprint withdrawn
Short summary

Related subject area

Ground-based instruments
Gas equilibrium membrane inlet mass spectrometry (GE-MIMS) for water at high pressure
Matthias S. Brennwald, Antonio P. Rinaldi, Jocelyn Gisiger, Alba Zappone, and Rolf Kipfer
Geosci. Instrum. Method. Data Syst., 13, 1–8, https://doi.org/10.5194/gi-13-1-2024,https://doi.org/10.5194/gi-13-1-2024, 2024
Short summary
Research and application of flexible measuring array for deep displacement of landslide
Yang Li, Zhong Li, Qifeng Guo, Yimin Liu, and Daji Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1978,https://doi.org/10.5194/egusphere-2023-1978, 2023
Short summary
A Hydrate Reservoir Renovation Device and Its Application in Nitrogen Bubble Fracturing
Jingsheng Lu, Yuanxin Yao, Dongliang Li, Jinhai Yang, Deqing Liang, Yiqun Zhang, Decai Lin, and Kunlin Ma
EGUsphere, https://doi.org/10.5194/egusphere-2023-1141,https://doi.org/10.5194/egusphere-2023-1141, 2023
Short summary
Development of a power station unit in a distributed hybrid acquisition system of seismic and electrical methods based on the narrowband Internet of Things (NB-IoT)
Feng Guo, Qisheng Zhang, and Shenghui Liu
Geosci. Instrum. Method. Data Syst., 12, 111–120, https://doi.org/10.5194/gi-12-111-2023,https://doi.org/10.5194/gi-12-111-2023, 2023
Short summary
Spectral observations at the Canary Island Long-Baseline Observatory (CILBO): calibration and datasets
Joe Zender, Detlef Koschny, Regina Rudawska, Salvatore Vicinanza, Stefan Loehle, Martin Eberhart, Arne Meindl, Hans Smit, Lionel Marraffa, Rico Landman, and Daphne Stam
Geosci. Instrum. Method. Data Syst., 12, 91–109, https://doi.org/10.5194/gi-12-91-2023,https://doi.org/10.5194/gi-12-91-2023, 2023
Short summary

Cited articles

Behari, J.: Dielectric Constant of Soil, in: Microwave Dielectric Behavior of Wet Soils. Remote Sensing and Digital Image Processing, 8, Springer, Dordrecht, https://doi.org/10.1007/1-4020-3288-9_5, 2005. 
Bittelli, M.: Measuring Soil Water Content: A Review, HortTechnology, 21, 8, https://doi.org/10.21273/HORTTECH.21.3.293, 2011. 
Campbell, J. E.: Dielectric Properties and Influence of Conductivity in Soils at One-to-Fifty-Megahertz, Soil Sci. Soc. Am. J., 54, 332–341, https://doi.org/10.2136/sssaj1990.03615995005400020006x, 1990. 
Cihlor, J. and Ulaby, F. T.: NASA-CR-141868 Dielectric Properties Of Soils As A Function Of Moisture Content, Remote Sensing Laboratory (RSL) Technical Report, 177-4, https://ntrs.nasa.gov/api/citations/19750018483/downloads/19750018483.pdf (last access: 25 January 2023), 1974. 
Davis, J. L. and Annan, A. P.: Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy, Geophys. Prospect., 37, 531–552, https://doi.org/10.1111/j.1365-2478.1989.tb02221.x, 1989. 
Download
Short summary
In most cases, the soil water content (SWC) measurement is carried out using commercially available dielectric-permittivity-based probes such as time domain reflectometers or frequency domain reflectometers (FDR). However, these probes use transfer functions which may be inadequate in the soil concerned. Raw SWC measurement in clayey soil shows an important relative error. A simple protocol is presented, allowing for the recovery of an acceptable accuracy of the FDR SWC measurements.