Articles | Volume 7, issue 3
Geosci. Instrum. Method. Data Syst., 7, 223–234, 2018
https://doi.org/10.5194/gi-7-223-2018
Geosci. Instrum. Method. Data Syst., 7, 223–234, 2018
https://doi.org/10.5194/gi-7-223-2018

Research article 31 Jul 2018

Research article | 31 Jul 2018

Links between annual surface temperature variation and land cover heterogeneity for a boreal forest as characterized by continuous, fibre-optic DTS monitoring

Kazuyuki Saito et al.

Related authors

Numerical model to simulate long-term soil organic carbon and ground ice budget with permafrost and ice sheets (SOC-ICE-v1.0)
Kazuyuki Saito, Hirokazu Machiya, Go Iwahana, Tokuta Yokohata, and Hiroshi Ohno
Geosci. Model Dev., 14, 521–542, https://doi.org/10.5194/gmd-14-521-2021,https://doi.org/10.5194/gmd-14-521-2021, 2021
Short summary
Past, present and future biomes in Beringia: Comparison between simulations and pollen analysis
Kazuyuki Saito, Amy Hendricks, John Walsh, and Nancy Bigelow
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-29,https://doi.org/10.5194/cp-2018-29, 2018
Preprint withdrawn
Short summary
Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia
M. A. Rawlins, A. D. McGuire, J. S. Kimball, P. Dass, D. Lawrence, E. Burke, X. Chen, C. Delire, C. Koven, A. MacDougall, S. Peng, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, P. Ciais, B. Decharme, I. Gouttevin, T. Hajima, D. Ji, G. Krinner, D. P. Lettenmaier, P. Miller, J. C. Moore, B. Smith, and T. Sueyoshi
Biogeosciences, 12, 4385–4405, https://doi.org/10.5194/bg-12-4385-2015,https://doi.org/10.5194/bg-12-4385-2015, 2015
Short summary
LGM permafrost distribution: how well can the latest PMIP multi-model ensembles perform reconstruction?
K. Saito, T. Sueyoshi, S. Marchenko, V. Romanovsky, B. Otto-Bliesner, J. Walsh, N. Bigelow, A. Hendricks, and K. Yoshikawa
Clim. Past, 9, 1697–1714, https://doi.org/10.5194/cp-9-1697-2013,https://doi.org/10.5194/cp-9-1697-2013, 2013

Related subject area

Ground-based instruments
Daytime and nighttime aerosol optical depth implementation in CÆLIS
Ramiro González, Carlos Toledano, Roberto Román, David Fuertes, Alberto Berjón, David Mateos, Carmen Guirado-Fuentes, Cristian Velasco-Merino, Juan Carlos Antuña-Sánchez, Abel Calle, Victoria E. Cachorro, and Ángel M. de Frutos
Geosci. Instrum. Method. Data Syst., 9, 417–433, https://doi.org/10.5194/gi-9-417-2020,https://doi.org/10.5194/gi-9-417-2020, 2020
Short summary
A geophone-based and low-cost data acquisition and analysis system designed for microtremor measurements
Ozkan Kafadar
Geosci. Instrum. Method. Data Syst., 9, 365–373, https://doi.org/10.5194/gi-9-365-2020,https://doi.org/10.5194/gi-9-365-2020, 2020
Short summary
Evaluation of the capacities of a field absolute quantum gravimeter (AQG#B01)
Anne-Karin Cooke, Cédric Champollion, and Nicolas Le Moigne
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2020-22,https://doi.org/10.5194/gi-2020-22, 2020
Revised manuscript accepted for GI
Short summary
A monitoring system for spatiotemporal electrical self-potential measurements in cryospheric environments
Maximilian Weigand, Florian M. Wagner, Jonas K. Limbrock, Christin Hilbich, Christian Hauck, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 9, 317–336, https://doi.org/10.5194/gi-9-317-2020,https://doi.org/10.5194/gi-9-317-2020, 2020
Short summary
Evaluating the suitability of the consumer low-cost Parrot Flower Power soil moisture sensor for scientific environmental applications
Angelika Xaver, Luca Zappa, Gerhard Rab, Isabella Pfeil, Mariette Vreugdenhil, Drew Hemment, and Wouter Arnoud Dorigo
Geosci. Instrum. Method. Data Syst., 9, 117–139, https://doi.org/10.5194/gi-9-117-2020,https://doi.org/10.5194/gi-9-117-2020, 2020
Short summary

Cited articles

Beer, C., Lucht, W., Gerten, D., Thonicke, K., and Schmullius, C.: Effects of soil freezing and thawing on vegetation carbon density in Siberia: a modeling analysis with the Lund–Potsdam–Jena dynamic global vegetation model (LPJ-DGVM), Global Biogeochem. Cy., 21, GB1012, https://doi.org/10.1029/2006GB002760, 2007. 
Dakin, J. P., Pratt, D. J., Bibby, G. W., and Ross, J. N.: Raman temperature sensor using a semiconductor light source and detector, Electron. Lett., 21, 569–570, 1985. 
Dyer, S. D., Tanner, M. G., Baek, B., Hadfield, R. H., and Nam, S. W.: Analysis of a distributed fiber-optic temperature sensor using single-photon detectors, Opt. Express, 20, 3456–3466, 2012. 
Essery, R. L. H., Rutter, N., Pomeroy, J., Baxter, R., Staehli, M., Gustafsson, D., Barr, A., Bartlett, P., and Elder, K.: SnowMIP2: An evaluation of forest snow process simulations, B. Am. Meteorol. Soc., 90, 1120–1135, https://doi.org/10.1175/2009BAMS2629.1, 2009. 
Euskirchen, E. S., McGuire, A. D., Kicklighter, D. W., Zhuanf, Q., Clein, J. S., Dargaville, R. J., Dye, D. G., Kimball, J. S., McDonald, K. C., Melillo, J. M., Romanovsky, V. E., and Smith, N. V.: Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems, Glob. Change Biol., 12, 731–750, 2006. 
Download
Short summary
A DTS system, using fibre-optic cables as a temperature sensor, measured surface and subsurface temperatures at a boreal forest underlain by permafrost in the interior of Alaska for 2 years every 30 min at 0.5-metre intervals along 2.7 km to monitor the daily and seasonal temperature changes, whose temperature ranges between −40 ºC in winter and 30 ºC in summer. This instrumentation illustrated characteristics of temperature variations and snow pack dynamics under different land cover types.